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SUMMARY

The entry flow of viscoelastic second-order fluid between two parallel plates is discussed. The governing
equations of vorticity and the streamfunction are expanded with respect to a small parameter that
characterizes the elasticity of the fluid by means of the standard perturbation method. By using the
differential quadrature method with only a few grid points, high-accurate numerical solutions are
obtained. The numerical results show a lot of the features of a viscoelastic second-order fluid. Copyright
© 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The differential quadrature method (DQM) proposed by Bellman [1,2] has been successfully
employed to obtain numerical solutions in engineering and physical science [3]. Because the
information on all grid points is used to fit derivatives at grid points in the DQM, it is enough
to use only a few grid points to obtain high-accurate numerical solutions. There are many
papers discussing the Newtonian viscous fluid by the DQM [4–8]. But, because of the
complexity of the constitutive relations of non-Newtonian fluid, there are only a few papers
dealing with this problem by means of DQM. This paper attempts to solve numerically the
entry flow of a viscoelastic fluid between two parallel plates by the DQM.

In Reference [9], the collocation and Galerkin finite element methods are used to compute
the problem of entry flow of viscous fluid and power-law fluid. Reference [11] discusses the
slow flow of a viscoelastic second-order fluid through a contraction by the finite element
method. Reference [12] studies an entry flow in a circular tube by the boundary layer theory.
In this paper, the second-order model and the governing equations on vorticity and the
streamfunction are employed. First, the equations are expanded with respect to a small
parameter that characterizes the elasticity of the fluid by means of the standard perturbation
method. Then, the resulting zero- and first-order approximative equations are numerically
solved by the DQM. By using only a few grid points, good numerical solutions for velocity and
stress are obtained. The results obtained in this paper are in agreement with those in [9,11,12].
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The governing equations and the boundary conditions of entry flow are given in Section 2.
By means of the standard perturbation method, the zero- and first-order approximative
equations are given in Section 3. The implementation of the DQM is explained in detail in
Section 4. The numerical results are listed in Section 5.

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

Let us consider the entry flow model between two parallel plates (Figure 1) in which the
velocity components u=U (is constant) and 6=0 at the entrance; u=6=0 on the plate.
Suppose that the flow is in full development at the exit. On the centerline, (u/(y=0 and 6=0
by symmetry.

Let the viscoelastic fluid be the second order model as follows:

s= −pI+t= −pI+h0A1+a1A1
2+a2A2, (1)

in which s is the stress tensor, p is the hydrostatic pressure, I is the unit tensor, t is the
deviatoric tensor of stress; A1 and A2 are the first and second Rivlin–Ericksen tensor
respectively, h0 is the viscosity, a1 and a2 are the material parameters characterizing the
elasticity of fluid. By introducing dimensionless variables
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where b1=a1U/h0H, b2=a2U/h0H are dimensionless parameters.
The governing equations are

(u
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(y
=0, (3.1)

Figure 1. Entry flow model.
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where Re=rUH/h0 is the Reynolds number.
Let the streamfunction C and vorticity v satisfy
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(C
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. (4)

Substituting (2) into (3) and eliminating pressure p we get

Re
�

u
(v

(x
+6
(v

(y
�

=92v+b2
�

u
(

(x
+6

(

(y
�
92v, (5.1)

92C= −v. (5.2)

Equations (5.1) and (5.2) are the governing equations of the fundamental unknown variables
C and v. The boundary conditions can be written as

C=y, v−
(6

(x
=0, u=1, 6=0 for x=0, 05y51, (6.1)

(C
(x

=0,
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=0,
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=0, 6=0 for x=a, 05y51, (6.2)

C=0, v=0,
(u
(y

=0, 6=0 for y=0, 0BxBa, (6.3)

C=1, v+
(u
(y

=0, u=0, 6=0 for y=1, 0BxBa, (6.4)

where a=L/H.

3. PERTURBATION EXPANSION

If the elasticity of the fluid is slight, b1 and b2 can be considered as small parameters.
According to [10], we have b2B0, b1\0 and b1= −cb2, c:1.6. So we can introduce only
one small parameter o= −b2 in the problem, then b1= −co. By expanding v, C, u and 6 as

v=v0+ov1, C=C0+oC1, u=u0+ou1, 6=60+o61, (7)

and substituting (7) into (4) and (5), then neglecting the terms of order o2, we get zero-order
approximative equations
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and the first-order approximative equations
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Obviously, the zero-order approximative equations are the governing equations of an incom-
pressible Newtonian fluid, and the boundary conditions of v0, C0, u0 and 60 are same as in (6).
The boundary conditions of v1, C1, u1 and 61 are the homogeneous form of (6), which means
all of the right-hand-sides in Equations (6) should be zeros.

By expanding the deviatoric stress t as t=t0+ot1, we get the components of the zero-order
approximation t0 as follows:

txx
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Obviously, t0 is the deviatoric stress of the incompressible Newtonian flow and can be
considered as the contribution of viscosity of the fluid. The components of the first-order
approximation t1 are
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which can be considered as the contribution of elasticity of the fluid.

4. NUMERICAL METHOD

Placing N×M uniform grid points (xi, yj), 15 i5N, 15 j5M in the considered domain
05x5a, 05y51, the derivatives of a function f(x, y) at grid point (xi, yj) can be approxi-
mated by DQ discretization

fx(i, j )= %
N

k=1

Aik
(x)f(k, j ), fxx(i, j )= %

N

k=1

Bik
(x)f(k, j ), (12.1)

fy(i, j )= %
M

l=1

Ajl
(y)f(i, l), fyy(i, j )= %

M

l=1

Bjl
(y)f(i, l), (12.2)

where f(i, j ) denotes f(xi, yj), 15 i5N, 15 j5M. The quadrature coefficients Aik
(x), Bik

(x), Ajl
(y),

Bjl
(y) can be computed by the formulae given in [4].
Applying (12) to the zero-order approximative equations (8), we get
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where 25 i5N−1, 25 j5M−1.
The terms (v/(x and (6/(x denote the boundary conditions of the exit and the entrance

respectively. Since these boundary conditions are independent of the values of v and 6 at
another end, the DQ method is not used and the second-order difference formula is employed
for discretization of these derivatives in the boundary conditions of the exit and the entrance.

Because (13) and the discrete boundary conditions are non-linear, an iterative procedure
must be adopted to solve (13). If the (s−1)th iterative solutions v0

(s−1), C0
(s−1), u0

(s−1),60
(s−1)

are known from (13), with u0=u0
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(s−1), and the boundary conditions of v0, we can
solve v0 for the internal points. Then, let v0
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(s−1)+uv0, where v0 is the solution

of (13.1) and 0BuB1 is a damping factor. From (13.2), with v0=v0
(s) and the boundary

conditions of C0, we can get C0
(s). Finally, from (13.3) we can find u0
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(s). Therefore, the

unknown boundary values of v0
(s) can be obtained from the boundary conditions. This

procedure should be carried out successively until max �v0
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(s−1)�5e, where e is an
iterative accuracy given previously.

Applying (12) to the first-order approximative equations (9) gives
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where 25 i5N−1, 25 j5M−1. An iterative procedure is also adopted to solve the discrete
system (14).

5. NUMERICAL RESULTS AND DISCUSSION

Using the numerical method mentioned above, the numerical computations are carried out for
the entry flow of the viscoelastic second-order fluid with Re=1, 5, 10. In the actual
computation, we choose a=4, N=21, M=11, Dx=0.2, Dy=0.1 and the iterative accuracy
e=10−5. The convergent numerical solutions are obtained when the damping factor uB0.2.

Figure 2 shows the typical profiles of component u0 of the zero-order velocity at different
positions between two parallel plates. As a result of viscosity, when x increase, u0 decreases
near the plates and increases near the centerline, the flow tends to full development gradually.
As the Reynolds number increases, the required horizontal distance to reach fully developed
flow (i.e. entrance length) increases gradually. These are in agreement with [9] in the qualitative
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Figure 2. Typical profiles of zero-order velocity component u0 (Re=5).

Table I. Zero-order velocity components u0 at the centerline

x 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

Re=1 1.07 1.20 1.32 1.41 1.45 1.48 1.49 1.50 1.50 1.50 1.50 1.50 1.50
1.03 1.14 1.25 1.34 1.41 1.45 1.47Re=5 1.48 1.49 1.50 1.50 1.50 1.50
1.02 1.09 1.17 1.26 1.33 1.38Re=10 1.42 1.45 1.46 1.47 1.48 1.49 1.50

Figure 3. Typical profiles of first-order velocity component u1 (Re=5).

Table II. Maximum and minimum values of u1 at different positions (Re=5)

0.2 0.4x 0.6 0.8 1.0 1.2 1.4 1.6 1.8

0.169 0.199 0.273 0.303 0.271 0.216 0.159 0.111 0.073Max
−0.278 −0.328 −0.281 −0.230 −0.183 −0.137Min −0.097 −0.067 −0.044

analysis. Table I lists the values of u0 at the centerline with different Reynolds number and
shows that the entrance length is about 1.6, 2.0, 2.6 for Re=1, 5, 10 respectively. Although the
number of grid points is less and the step is large, accurate numerical solutions are still
obtained. It shows that high-accurate numerical solutions can be obtained by the numerical
method proposed in this paper.

Figure 3 shows the typical profiles of components u1 of the first-order velocity, Table II lists
the maximum and minimum values of u1 at the different positions. One can see that the elastic
effect makes the horizontal velocity component decrease near the plates and increase near the
centerline. This trend takes the velocity to full development more rapidly, i.e. the entrance
length of the entry flow is shortened, in agreement with [11,12].

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1109–1117 (1999)
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The typical streamlines for the zero- and first-order system are sketched in Figures 4 and 5.
The elastic effect of the second-order fluid decreases with development of the flow.

Figure 6 shows the sketch of the components of the deviatoric stress txx
0 , otxx

1 , txx and tyy
0 ,

otyy
1 , tyy at the centerline (o= −b2=0.1). The shear rate is small near the centerline, the

elasticity of the fluid slightly influences the stress, so the stress of the second-order fluid is close
to that of the Newtonian fluid. The sketch of the components of the deviatoric stress txx

0 , otxx
1 ,

txx and tyy
0 , otyy

1 , tyy near the wall (y=0.9) are shown in Figure 7 (o= −b2=0.1). The shear
rate is large near the wall, the elasticity of the fluid strongly influences the stress, so the stress
of the second-order fluid is evidently different to that of the Newtonian case. The first normal
stress difference txx−tyy can be observed near the wall.

It should be pointed out that, as the Reynolds number increases, the influence of the fluid
elasticity upon the velocity field extends, and the influence upon the stress components near

Figure 4. Typical streamlines of zero-order system (Re=5).

Figure 5. Typical streamlines of first-order system (Re=5).

Figure 6. Profiles of stress components at the centerline (Re=5).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1109–1117 (1999)
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Figure 7. Profiles of stress components near the wall (Re=5).

the entrance increases. But in the fully developed flow domain, the influence upon the stress
components does not changes as the Reynolds number increases.

6. CONCLUSION

For the entry flow of viscoelastic second-order fluid between two parallel plates, the governing
equations of vorticity and the streamfunction are expanded in terms of a small parameter that
characterizes the elasticity of the fluid by using a standard perturbation method. The zero- and
first-order approximative equations obtained by the perturbation method are numerically
solved by means of the DQM. The high-accurate numerical solutions are obtained with only
a few grid points. The numerical results show that the elasticity in the second-order fluid
makes the entrance length short, and it influences the stress near the centerline slightly and the
stress near the wall strongly.
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